Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
ACS ES T Water ; 2022.
Article in English | PubMed Central | ID: covidwho-2096629

ABSTRACT

Ruili and Longchuan, two border counties in southwestern China, are facing epidemic control challenges due to the high rate of COVID-19 infections originating from neighboring Myanmar. Here, we aimed to establish the applicability of wastewater and environmental water surveillance of SARS-CoV-2 and conduct whole-genome sequencing (WGS) to trace the possible infection origin. In August 2021, total 72 wastewater and river water samples were collected from 32 sampling sites. SARS-CoV-2 ORF1ab and N genes were measured by RT-qPCR. We found that 19 samples (26.39%) were positive, and the viral loads of ORF1ab and N genes were 6.62 × 102–2.55×105 and 1.86 × 103–2.32 × 105 copies/L, respectively. WGS further indicated the sequences in two transboundary river samples, and one hospital wastewater sample belonged to the delta variant, suggesting that the infection source might be areas with high COVID-19 delta variant incidence in Southeast Asia (e.g., Myanmar). We reported for the first time the detection and quantification of SARS-CoV-2 RNA in the transboundary rivers of Myanmar–China. Our findings demonstrate that wastewater and environmental water may provide independent and nonintrusive surveillance points to monitor the global spread of emerging COVID-19 variants of concern, particularly in high-risk regions or border areas with considerable epidemic challenges and poor wastewater treatment facilities.

2.
Biologia Plantarum ; 65:351-358, 2021.
Article in English | Web of Science | ID: covidwho-1614597

ABSTRACT

Atractylodes lancea (Thunb.) DC has been used widely as a medicinal herb for centuries and is now being used to treat COVID-19 pneumonia. Terpenoids are thought to be its main pharmacologically active constituents. However, their biosynthesis remains uncharacterized in this species. In this study, the terpene synthase gene AlTPS1 was cloned and functionally characterized. We found that AlTPS1 was a bifunctional enzyme that catalyzed the conversion of farnesyl diphosphate to nerolidol and geranyl diphosphate to linalool in vitro. However, it functioned only in the nerolidol production in vivo by transient expression of the AlTPS1 gene in Nicotiana benthamiana leaves maybe due to subcellular compartmentalization of the AlTPS1 in the cytosol. Furthermore, AlTPS1 was highly expressed in leaves, considered to be the sites of nerolidol synthesis. This study is the first in which the cloning and expression of the AlTPS1 gene from A. lancea were analyzed, and it has provided new insights into terpene biosynthesis in A. lancea.

SELECTION OF CITATIONS
SEARCH DETAIL